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Supercritical Fluids 

Typical fluids: CO2, H2O, propane

q Unique physicochemical properties such as 

liquid-like density and gas-like diffusivity 

q Tunable properties 

q Environmentally sustainable

Density (g/mL) Viscosity
(P)

gas ~10-3 0.5-3.5·10-4

SCF 0.2-0.9 0.2-1.0·10-3

liquid 0.8-1.2 0.3-2.4·10-4

Supercritical fluids are defined as substances above their critical temperature, Tc, and
critical pressure, pc.



Main advantages

q Green solvents

q Nontoxic, nonflammable and inexpensive reagents

q Easy to scale-up

q ↓Temperatures and ↓ degradation products

q It can act as a detoxification methodology

Why high-pressure CO2/H2O biphasic system?

Phase diagram of CO2/H2O mixture
(Geochim Cosmochim AC, 2000, 64, 1753-1764)



Integration of Green Chemistry into Biorefinery
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•Composites
•Porous Materials

Platform molecules
•Succinic Acid
•Furans
•Lactic Acid

Bio-energy
•Ethanol
•Fuel Gas
•Bio-oil

Bio-chemicals
•Vanillins
•Aromatics
•Derivatives

Bio-energy
•Heat
•Bio-oil

•Waxes
•Polycosanols
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Biorefinery concept scheme.  
Adapted from Kamm et al. Biorefineries – Industrial Processes and 
Products. Ullmann's Encyclopedia of Industrial Chemistry, 2007.

Twelve principles of Green Chemistry.  
Adapted from Anastas and Warner, Green Chemistry: Theory and 
Practice, Oxford University Press, New York, 1998.
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Most promising chemicals produced from biomass

1. Ethanol
2. Furans (FURFURAL)

3. Glycerol and derivatives
4. Biohydrocarbons

5. Lactic acid
6. Succinic acid

7. Hydroxypropionic
acid/aldehyde

8. Levulinic acid
9. Sorbitol
10. Xylitol

Top 10 added-value chemicals

Top 10 added-value chemicals produced from
biorefinery carbohydrates.  
Bozell and Petersen, Green Chemistry. 2010, 12, 539-554.



Problems, Challenges & Proposed solution

Outline of potential chemical and fuel derivatives produced  from 
furfural.
Adapted from Lange et al., ChemSusChem. 2012, 5, 150–166

ü Versatile biomass-based platform chemical

Promising building-block

Potential:

FURFURAL
Industrial production:

X mineral acid-based

X corrosion problems

X low yield and selectivity

X waste streams

PROBLEM
S

High-pressure CO2 as:

q promoter of in-situ acid catalyst formation & phase separation inducer

PROPOSED SOLUTION

NOVEL AND CLEANER TECHNOLOGY 

It would be characterised by:

ü no need of mineral acids/halides and 

heterogeneous catalysts addition

ü green solvents (e.g. H2O and CO2)

ü biphasic system à no need of salts

CHALLENGES



Water processes
2H#O ⇌ H& O' + OH −

CO2 + H2O biphasic system
q Mixture becomes more acidic (pH ≈ 3)

*+, + ,-,+ ↔ -*+/0 + -/+'
-*+/0 + -,+ ↔ *+/,0 + -/+'

50 bar of CO2 20/35 bar of CO2 Water process
3.72 3.78 5.5 

T = 200 ⁰C

Furfural production – approach concept

In-situ formation of carbonic acid

*G.P. van Walsum, Appl. Biochem. Biotechnol., 91-3 (2001) 

317.



↑ furfural yield
↑ reaction selectivity

HO
O

OHHO

OH
C5-sugars rich-liquor

High-pressure CO2/H2O 

with THF

Theory beyond this approach:

Furfural production – approach concept

Phase splitting of water/THF mixture in the presence of CO2.
Adapted from Pollet et al., Green Chemistry, 2014, 16, 1034–1055.



m
ol
%

CO2 as catalyst and phase splitting inductor

• High-pressure CO2 acts as 

acidic catalyst and phase 
splitting inductor

• THF acts as in-situ furfural 

extracting solvent

Best reaction conditions:
T = 180 ⁰C
t = 60 min
!"#$= 50 bar
%&$#/%'&( ratio = 10/5, mL/mL
[Xylose]feed = 12.5 g/L

Main results

• Acidic medium does not represent a problem

• No need of salts à biphasic system

• CO2 and THF are easily recycled and reused

Benefits



Does quantity of THF influence the furfural production?

Reaction conditions:
T = 180 ⁰C
t = 60 min
!"#$= 50 bar
[Xylose]feed = 12.5 g/L
Total volume = 15 mL
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Blue bars: C5-sugars conversion
Red bars: Furfural yield
Green bars: Selectivity

• Higher VTHF in reactive system adjuncts to achieve higher xylose conversion

• Excessive amount of THF has negative effect on furfural yield and reaction 

selectivity
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Influence of other parameters

Reaction condition:
T = 180 ⁰C
t = 60 min

!"#$= 50 bar

%&$# / %'&( ratio = 10/5,

mL/mL

• Furfural production was the fastest for 

the lowest xylose concentration

• Prolonged reaction times have negative 

effect on the furfural yield

Results

• Holding time and initial xylose feed

The evolution of furfural yield for various initial xylose concentrations 

achieved over time (■ −12.5 g/L, ○ – 9.4 g/L, △ – 6.3 g/L) 



Production of furfural from lignocellulosic residue

The concept for furfural production from lignocellulosic biomass



Production of furfural from lignocellulosic residue

• Formic and acetic acids can act as

additional homogeneous catalysts

leading also to its further degradation.

• Total C5-sugars conversion… lower

furfural yield and reaction selectivity



Final remarks
The combined adjunctive character of CO2 as either promoter of in-situ acid catalyst or

phase splitting inducer in aqueous media and THF as in-situ an extracting solvent

enabled a simple operational procedure for xylose dehydration into furfural;

ü

The conversion of D-xylose into furfural above 83 mol% with furfural yield of 70 mol%

and the selectivity of 84 % was achieved with only 50 bar of CO2 pressure and in

presence of THF.

ü

The total conversion of C5-sugars into furfural using wheat straw hydrolysates was

obtained, however quite low furfural yields and reaction selectivity of 43 mol% and 44

% were achieved.

ü
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