CBI Pro-Akademia

Rozwiń menu ▼

Contact

Katarzyna Woźniak
Katarzyna Woźniak
Technical Editor
e-mail:

Contact

Monika Stojan
Monika Stojan
Technical Editor
e-mail:

AI Partners

The image shows our cooperation with the online plagiarism detection service PlagScan

The task “Maintenance
of the anti-plagiarism system” is being
financed by an agreement 605/P-DUN/2018
from the resources of Polish Ministry of Science
and Higher Education dedicated to
the activity popularising the science.

Zadanie „Utrzymanie systemu antyplagiatowego”
finansowane w ramach umowy
605/P-DUN/2018 ze środków Ministra
Nauki i Szkolnictwa Wyższego przeznaczonych
na działalność upowszechniającą naukę

 

 

Crossref Member Badge

 

 

METHODS FOR REGENERATION AND STORAGE OF CERAMIC MEMBRANES

Date added: 2018-07-01
Type: Article

Author / authors

Aleksandra Zielińska

Aleksandra Zielińska

View more

Abstract

Ceramic membranes are among one of the most promising candidates for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. These advantages make them an attractive filter material. An additional benefit which is extremely important for the industry, is their possibility of continuous operation at high efficiency while maintaining constant transmembrane pressure. Due to the inorganic material from which they are made, ceramic membranes have the possibility of being cleaned by steam sterilization and are resistant to micro-organisms. Although, due to low production costs, ceramic membranes are one of the most cost-effective membrane filtration technologies they are prone to substantial fouling. When used, a layer of contaminants is formed on the active surface, often reducing or completely filling the membrane pores resulting in fouling and concentration polarization. These phenomena cause a decreased efficiency of the process, which leads to the need for the membrane to be replaced with a new one. However, ceramic membranes have the possibility of being regenerated through a series of activities and the use of various chemical agents. The use of regenerated membranes would provide the opportunity to reduce exploitation costs. Although membrane regeneration does not guarantee a return to the initial parameters, it does allow for the recovery of high permeation flow. The aim of the research was to compare operating parameters of the ceramic membranes after multiple use and longtime storage with different condition of storage.

Downloads / Links